New generative media models and tools, built with and for creators - Related to gemma:, foundation, a, generative, introducing
Gemma: Introducing new state-of-the-art open models

At Google, we believe in making AI helpful for everyone. We have a long history of contributing innovations to the open community, such as with Transformers, TensorFlow, BERT, T5, JAX, AlphaFold, and AlphaCode. Today, we’re excited to introduce a new generation of open models from Google to assist developers and researchers in building AI responsibly.
Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is inspired by Gemini, and the name reflects the Latin gemma, meaning “precious stone.” Accompanying our model weights, we’re also releasing tools to support developer innovation, foster collaboration, and guide responsible use of Gemma models.
Gemma is available worldwide, starting today. Here are the key details to know:
Gemma models share technical and infrastructure components with Gemini, our largest and most capable AI model widely available today. This enables Gemma 2B and 7B to achieve best-in-class performance for their sizes compared to other open models. And Gemma models are capable of running directly on a developer laptop or desktop computer. Notably, Gemma surpasses significantly larger models on key benchmarks while adhering to our rigorous standards for safe and responsible outputs. See the technical research for details on performance, dataset composition, and modeling methodologies.
"The Thinking Part" by Daniel Warfield using MidJourney. All images by the author unless otherwise specified. Article originally made available on Int...
In December, we launched our first natively multimodal model Gemini [website] in three sizes: Ultra, Pro and Nano. Just a few months later we released [website] P...
Responsibility & Safety Updating the Frontier Safety Framework Share.
Our next iteration of the FSF sets out stronger security prot...
Genie 2: A large-scale foundation world model

Today we introduce Genie 2, a foundation world model capable of generating an endless variety of action-controllable, playable 3D environments for training and evaluating embodied agents. Based on a single prompt image, it can be played by a human or AI agent using keyboard and mouse inputs.
Games play a key role in the world of artificial intelligence (AI) research. Their engaging nature, unique blend of challenges, and measurable progress make them ideal environments to safely test and advance AI capabilities.
Indeed, games have been key to Google DeepMind since our founding. From our early work with Atari games, breakthroughs such as AlphaGo and AlphaStar, to our research on generalist agents in collaboration with game developers, games have been center stage in our research. However, training more general embodied agents has been traditionally bottlenecked by the availability of sufficiently rich and diverse training environments.
As we show, Genie 2 could enable future agents to be trained and evaluated in a limitless curriculum of novel worlds. Our research also paves the way for new, creative workflows for prototyping interactive experiences.
Applying our AI research to help enrich the lives of billions of people around the world.
Building useful products with new technologies has always be...
Responsibility & Safety Updating the Frontier Safety Framework Share.
Our next iteration of the FSF sets out stronger security prot...
This morning, Co-founder and CEO of Google DeepMind and Isomorphic Labs Sir Demis Hassabis, and Google DeepMind Director Dr. John Jumper were co-award...
New generative media models and tools, built with and for creators

Over the past year, we’ve made incredible progress in enhancing the quality of our generative media technologies. We’ve been working closely with the creative community to explore how generative AI can best support the creative process, and to make sure our AI tools are as useful as possible at each stage.
Today, we’re introducing Veo, our latest and most advanced video generation model, and Imagen 3, our highest quality text-to-image model yet.
We’re also sharing some of our recent collaborations with filmmaker Donald Glover and his creative studio, Gilga, and new demo recordings being released by artists Wyclef Jean, Marc Rebillet and songwriter Justin Tranter, made with help from our Music AI Sandbox.
Building a responsible approach to data collection with the Partnership on AI.
At DeepMind, our goal is to make sure everything we do meets the highes...
A note from Google and Alphabet CEO Sundar Pichai:
Information is at the core of human progress. It’s why we’ve focused for more than 26 years on our...
Earlier today we introduced some changes that will accelerate our progress in AI and help us develop more capable AI systems safely and responsibly. Be...
Market Impact Analysis
Market Growth Trend
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|
23.1% | 27.8% | 29.2% | 32.4% | 34.2% | 35.2% | 35.6% |
Quarterly Growth Rate
Q1 2024 | Q2 2024 | Q3 2024 | Q4 2024 |
---|---|---|---|
32.5% | 34.8% | 36.2% | 35.6% |
Market Segments and Growth Drivers
Segment | Market Share | Growth Rate |
---|---|---|
Machine Learning | 29% | 38.4% |
Computer Vision | 18% | 35.7% |
Natural Language Processing | 24% | 41.5% |
Robotics | 15% | 22.3% |
Other AI Technologies | 14% | 31.8% |
Technology Maturity Curve
Different technologies within the ecosystem are at varying stages of maturity:
Competitive Landscape Analysis
Company | Market Share |
---|---|
Google AI | 18.3% |
Microsoft AI | 15.7% |
IBM Watson | 11.2% |
Amazon AI | 9.8% |
OpenAI | 8.4% |
Future Outlook and Predictions
The Models Gemma Introducing landscape is evolving rapidly, driven by technological advancements, changing threat vectors, and shifting business requirements. Based on current trends and expert analyses, we can anticipate several significant developments across different time horizons:
Year-by-Year Technology Evolution
Based on current trajectory and expert analyses, we can project the following development timeline:
Technology Maturity Curve
Different technologies within the ecosystem are at varying stages of maturity, influencing adoption timelines and investment priorities:
Innovation Trigger
- Generative AI for specialized domains
- Blockchain for supply chain verification
Peak of Inflated Expectations
- Digital twins for business processes
- Quantum-resistant cryptography
Trough of Disillusionment
- Consumer AR/VR applications
- General-purpose blockchain
Slope of Enlightenment
- AI-driven analytics
- Edge computing
Plateau of Productivity
- Cloud infrastructure
- Mobile applications
Technology Evolution Timeline
- Improved generative models
- specialized AI applications
- AI-human collaboration systems
- multimodal AI platforms
- General AI capabilities
- AI-driven scientific breakthroughs
Expert Perspectives
Leading experts in the ai tech sector provide diverse perspectives on how the landscape will evolve over the coming years:
"The next frontier is AI systems that can reason across modalities and domains with minimal human guidance."
— AI Researcher
"Organizations that develop effective AI governance frameworks will gain competitive advantage."
— Industry Analyst
"The AI talent gap remains a critical barrier to implementation for most enterprises."
— Chief AI Officer
Areas of Expert Consensus
- Acceleration of Innovation: The pace of technological evolution will continue to increase
- Practical Integration: Focus will shift from proof-of-concept to operational deployment
- Human-Technology Partnership: Most effective implementations will optimize human-machine collaboration
- Regulatory Influence: Regulatory frameworks will increasingly shape technology development
Short-Term Outlook (1-2 Years)
In the immediate future, organizations will focus on implementing and optimizing currently available technologies to address pressing ai tech challenges:
- Improved generative models
- specialized AI applications
- enhanced AI ethics frameworks
These developments will be characterized by incremental improvements to existing frameworks rather than revolutionary changes, with emphasis on practical deployment and measurable outcomes.
Mid-Term Outlook (3-5 Years)
As technologies mature and organizations adapt, more substantial transformations will emerge in how security is approached and implemented:
- AI-human collaboration systems
- multimodal AI platforms
- democratized AI development
This period will see significant changes in security architecture and operational models, with increasing automation and integration between previously siloed security functions. Organizations will shift from reactive to proactive security postures.
Long-Term Outlook (5+ Years)
Looking further ahead, more fundamental shifts will reshape how cybersecurity is conceptualized and implemented across digital ecosystems:
- General AI capabilities
- AI-driven scientific breakthroughs
- new computing paradigms
These long-term developments will likely require significant technical breakthroughs, new regulatory frameworks, and evolution in how organizations approach security as a fundamental business function rather than a technical discipline.
Key Risk Factors and Uncertainties
Several critical factors could significantly impact the trajectory of ai tech evolution:
Organizations should monitor these factors closely and develop contingency strategies to mitigate potential negative impacts on technology implementation timelines.
Alternative Future Scenarios
The evolution of technology can follow different paths depending on various factors including regulatory developments, investment trends, technological breakthroughs, and market adoption. We analyze three potential scenarios:
Optimistic Scenario
Responsible AI driving innovation while minimizing societal disruption
Key Drivers: Supportive regulatory environment, significant research breakthroughs, strong market incentives, and rapid user adoption.
Probability: 25-30%
Base Case Scenario
Incremental adoption with mixed societal impacts and ongoing ethical challenges
Key Drivers: Balanced regulatory approach, steady technological progress, and selective implementation based on clear ROI.
Probability: 50-60%
Conservative Scenario
Technical and ethical barriers creating significant implementation challenges
Key Drivers: Restrictive regulations, technical limitations, implementation challenges, and risk-averse organizational cultures.
Probability: 15-20%
Scenario Comparison Matrix
Factor | Optimistic | Base Case | Conservative |
---|---|---|---|
Implementation Timeline | Accelerated | Steady | Delayed |
Market Adoption | Widespread | Selective | Limited |
Technology Evolution | Rapid | Progressive | Incremental |
Regulatory Environment | Supportive | Balanced | Restrictive |
Business Impact | Transformative | Significant | Modest |
Transformational Impact
Redefinition of knowledge work, automation of creative processes. This evolution will necessitate significant changes in organizational structures, talent development, and strategic planning processes.
The convergence of multiple technological trends—including artificial intelligence, quantum computing, and ubiquitous connectivity—will create both unprecedented security challenges and innovative defensive capabilities.
Implementation Challenges
Ethical concerns, computing resource limitations, talent shortages. Organizations will need to develop comprehensive change management strategies to successfully navigate these transitions.
Regulatory uncertainty, particularly around emerging technologies like AI in security applications, will require flexible security architectures that can adapt to evolving compliance requirements.
Key Innovations to Watch
Multimodal learning, resource-efficient AI, transparent decision systems. Organizations should monitor these developments closely to maintain competitive advantages and effective security postures.
Strategic investments in research partnerships, technology pilots, and talent development will position forward-thinking organizations to leverage these innovations early in their development cycle.
Technical Glossary
Key technical terms and definitions to help understand the technologies discussed in this article.
Understanding the following technical concepts is essential for grasping the full implications of the security threats and defensive measures discussed in this article. These definitions provide context for both technical and non-technical readers.