Technology News from Around the World, Instantly on Oracnoos!

Chain-of-table: Evolving tables in the reasoning chain for table understanding - Related to ml-ready, understanding, reasoning, table, new

Chain-of-table: Evolving tables in the reasoning chain for table understanding

Chain-of-table: Evolving tables in the reasoning chain for table understanding

People use tables every day to organize and interpret complex information in a structured, easily accessible format. Due to the ubiquity of such tables, reasoning over tabular data has long been a central topic in natural language processing (NLP). Researchers in this field have aimed to leverage language models to help consumers answer questions, verify statements, and analyze data based on tables. However, language models are trained over large amounts of plain text, so the inherently structured nature of tabular data can be difficult for language models to fully comprehend and utilize.

not long ago, large language models (LLMs) have achieved outstanding performance across diverse natural language understanding (NLU) tasks by generating reliable reasoning chains, as shown in works like Chain-of-Thought and Least-to-Most. However, the most suitable way for LLMs to reason over tabular data remains an open question.

In “Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding”, we propose a framework to tackle table understanding tasks, where we train LLMs to outline their reasoning step by step, updating a given table iteratively to reflect each part of a thought process, akin to how people solve the table-based problems. This enables the LLM to transform the table into simpler and more manageable segments so that it can understand and analyze each part of the table in depth. This approach has yielded significant improvements and achieved new state-of-the-art results on the WikiTQ, TabFact, and FeTaQA benchmarks. The figure below demonstrates the high-level overview of the proposed Chain-of-Table and other methods.

During conversations with engineers or IIT graduates, a common aspiration emerges – their plans to move abroad for higher education or career opportun...

SCIN: A new resource for representative dermatology images

SCIN: A new resource for representative dermatology images

Health datasets play a crucial role in research and medical education, but it can be challenging to create a dataset that represents the real world. For example, dermatology conditions are diverse in their appearance and severity and manifest differently across skin tones. Yet, existing dermatology image datasets often lack representation of everyday conditions (like rashes, allergies and infections) and skew towards lighter skin tones. Furthermore, race and ethnicity information is frequently missing, hindering our ability to assess disparities or create solutions.

To address these limitations, we are releasing the Skin Condition Image Network (SCIN) dataset in collaboration with physicians at Stanford Medicine. We designed SCIN to reflect the broad range of concerns that people search for online, supplementing the types of conditions typically found in clinical datasets. It contains images across various skin tones and body parts, helping to ensure that future AI tools work effectively for all. We've made the SCIN dataset freely available as an open-access resource for researchers, educators, and developers, and have taken careful steps to protect contributor privacy.

Amazon Q Business, first introduced at the Amazon Web Services (AWS) re:Invent in 2023, has evolved over the past 12 months to become a comprehensive ...

Machine learning models in the real world are often trained on limited data that may contain unintended statistical biases. For example, in the CELEBA...

Croissant: a metadata format for ML-ready datasets

Croissant: a metadata format for ML-ready datasets

Machine learning (ML) practitioners looking to reuse existing datasets to train an ML model often spend a lot of time understanding the data, making sense of its organization, or figuring out what subset to use as elements. So much time, in fact, that progress in the field of ML is hampered by a fundamental obstacle: the wide variety of data representations.

ML datasets cover a broad range of content types, from text and structured data to images, audio, and video. Even within datasets that cover the same types of content, every dataset has a unique ad hoc arrangement of files and data formats. This challenge reduces productivity throughout the entire ML development process, from finding the data to training the model. It also impedes development of badly needed tooling for working with datasets.

There are general purpose metadata formats for datasets such as [website] and DCAT. However, these formats were designed for data discovery rather than for the specific needs of ML data, such as the ability to extract and combine data from structured and unstructured insights, to include metadata that would enable responsible use of the data, or to describe ML usage characteristics such as defining training, test and validation sets.

Today, we're introducing Croissant, a new metadata format for ML-ready datasets. Croissant was developed collaboratively by a community from industry and academia, as part of the MLCommons effort. The Croissant format doesn't change how the actual data is represented ([website], image or text file formats) — it provides a standard way to describe and organize it. Croissant builds upon [website], the de facto standard for publishing structured data on the Web, which is already used by over 40M datasets. Croissant augments it with comprehensive layers for ML relevant metadata, data resources, data organization, and default ML semantics.

In addition, we are announcing support from major tools and repositories: Today, three widely used collections of ML datasets — Kaggle, Hugging Face, and OpenML — will begin supporting the Croissant format for the datasets they host; the Dataset Search tool lets individuals search for Croissant datasets across the Web; and popular ML frameworks, including TensorFlow, PyTorch, and JAX, can load Croissant datasets easily using the TensorFlow Datasets (TFDS) package.

Due to the complexity of understanding and solving various tasks solely using instructions, the size of multi-task LLMs typically spans from several b...

During conversations with engineers or IIT graduates, a common aspiration emerges – their plans to move abroad for higher education or career opportun...

Text-to-image diffusion models have shown exceptional capabilities in generating high-quality images from text prompts. However, leading models featur...

Market Impact Analysis

Market Growth Trend

2018201920202021202220232024
23.1%27.8%29.2%32.4%34.2%35.2%35.6%
23.1%27.8%29.2%32.4%34.2%35.2%35.6% 2018201920202021202220232024

Quarterly Growth Rate

Q1 2024 Q2 2024 Q3 2024 Q4 2024
32.5% 34.8% 36.2% 35.6%
32.5% Q1 34.8% Q2 36.2% Q3 35.6% Q4

Market Segments and Growth Drivers

Segment Market Share Growth Rate
Machine Learning29%38.4%
Computer Vision18%35.7%
Natural Language Processing24%41.5%
Robotics15%22.3%
Other AI Technologies14%31.8%
Machine Learning29.0%Computer Vision18.0%Natural Language Processing24.0%Robotics15.0%Other AI Technologies14.0%

Technology Maturity Curve

Different technologies within the ecosystem are at varying stages of maturity:

Innovation Trigger Peak of Inflated Expectations Trough of Disillusionment Slope of Enlightenment Plateau of Productivity AI/ML Blockchain VR/AR Cloud Mobile

Competitive Landscape Analysis

Company Market Share
Google AI18.3%
Microsoft AI15.7%
IBM Watson11.2%
Amazon AI9.8%
OpenAI8.4%

Future Outlook and Predictions

The Chain Table Evolving landscape is evolving rapidly, driven by technological advancements, changing threat vectors, and shifting business requirements. Based on current trends and expert analyses, we can anticipate several significant developments across different time horizons:

Year-by-Year Technology Evolution

Based on current trajectory and expert analyses, we can project the following development timeline:

2024Early adopters begin implementing specialized solutions with measurable results
2025Industry standards emerging to facilitate broader adoption and integration
2026Mainstream adoption begins as technical barriers are addressed
2027Integration with adjacent technologies creates new capabilities
2028Business models transform as capabilities mature
2029Technology becomes embedded in core infrastructure and processes
2030New paradigms emerge as the technology reaches full maturity

Technology Maturity Curve

Different technologies within the ecosystem are at varying stages of maturity, influencing adoption timelines and investment priorities:

Time / Development Stage Adoption / Maturity Innovation Early Adoption Growth Maturity Decline/Legacy Emerging Tech Current Focus Established Tech Mature Solutions (Interactive diagram available in full report)

Innovation Trigger

  • Generative AI for specialized domains
  • Blockchain for supply chain verification

Peak of Inflated Expectations

  • Digital twins for business processes
  • Quantum-resistant cryptography

Trough of Disillusionment

  • Consumer AR/VR applications
  • General-purpose blockchain

Slope of Enlightenment

  • AI-driven analytics
  • Edge computing

Plateau of Productivity

  • Cloud infrastructure
  • Mobile applications

Technology Evolution Timeline

1-2 Years
  • Improved generative models
  • specialized AI applications
3-5 Years
  • AI-human collaboration systems
  • multimodal AI platforms
5+ Years
  • General AI capabilities
  • AI-driven scientific breakthroughs

Expert Perspectives

Leading experts in the ai tech sector provide diverse perspectives on how the landscape will evolve over the coming years:

"The next frontier is AI systems that can reason across modalities and domains with minimal human guidance."

— AI Researcher

"Organizations that develop effective AI governance frameworks will gain competitive advantage."

— Industry Analyst

"The AI talent gap remains a critical barrier to implementation for most enterprises."

— Chief AI Officer

Areas of Expert Consensus

  • Acceleration of Innovation: The pace of technological evolution will continue to increase
  • Practical Integration: Focus will shift from proof-of-concept to operational deployment
  • Human-Technology Partnership: Most effective implementations will optimize human-machine collaboration
  • Regulatory Influence: Regulatory frameworks will increasingly shape technology development

Short-Term Outlook (1-2 Years)

In the immediate future, organizations will focus on implementing and optimizing currently available technologies to address pressing ai tech challenges:

  • Improved generative models
  • specialized AI applications
  • enhanced AI ethics frameworks

These developments will be characterized by incremental improvements to existing frameworks rather than revolutionary changes, with emphasis on practical deployment and measurable outcomes.

Mid-Term Outlook (3-5 Years)

As technologies mature and organizations adapt, more substantial transformations will emerge in how security is approached and implemented:

  • AI-human collaboration systems
  • multimodal AI platforms
  • democratized AI development

This period will see significant changes in security architecture and operational models, with increasing automation and integration between previously siloed security functions. Organizations will shift from reactive to proactive security postures.

Long-Term Outlook (5+ Years)

Looking further ahead, more fundamental shifts will reshape how cybersecurity is conceptualized and implemented across digital ecosystems:

  • General AI capabilities
  • AI-driven scientific breakthroughs
  • new computing paradigms

These long-term developments will likely require significant technical breakthroughs, new regulatory frameworks, and evolution in how organizations approach security as a fundamental business function rather than a technical discipline.

Key Risk Factors and Uncertainties

Several critical factors could significantly impact the trajectory of ai tech evolution:

Ethical concerns about AI decision-making
Data privacy regulations
Algorithm bias

Organizations should monitor these factors closely and develop contingency strategies to mitigate potential negative impacts on technology implementation timelines.

Alternative Future Scenarios

The evolution of technology can follow different paths depending on various factors including regulatory developments, investment trends, technological breakthroughs, and market adoption. We analyze three potential scenarios:

Optimistic Scenario

Responsible AI driving innovation while minimizing societal disruption

Key Drivers: Supportive regulatory environment, significant research breakthroughs, strong market incentives, and rapid user adoption.

Probability: 25-30%

Base Case Scenario

Incremental adoption with mixed societal impacts and ongoing ethical challenges

Key Drivers: Balanced regulatory approach, steady technological progress, and selective implementation based on clear ROI.

Probability: 50-60%

Conservative Scenario

Technical and ethical barriers creating significant implementation challenges

Key Drivers: Restrictive regulations, technical limitations, implementation challenges, and risk-averse organizational cultures.

Probability: 15-20%

Scenario Comparison Matrix

FactorOptimisticBase CaseConservative
Implementation TimelineAcceleratedSteadyDelayed
Market AdoptionWidespreadSelectiveLimited
Technology EvolutionRapidProgressiveIncremental
Regulatory EnvironmentSupportiveBalancedRestrictive
Business ImpactTransformativeSignificantModest

Transformational Impact

Redefinition of knowledge work, automation of creative processes. This evolution will necessitate significant changes in organizational structures, talent development, and strategic planning processes.

The convergence of multiple technological trends—including artificial intelligence, quantum computing, and ubiquitous connectivity—will create both unprecedented security challenges and innovative defensive capabilities.

Implementation Challenges

Ethical concerns, computing resource limitations, talent shortages. Organizations will need to develop comprehensive change management strategies to successfully navigate these transitions.

Regulatory uncertainty, particularly around emerging technologies like AI in security applications, will require flexible security architectures that can adapt to evolving compliance requirements.

Key Innovations to Watch

Multimodal learning, resource-efficient AI, transparent decision systems. Organizations should monitor these developments closely to maintain competitive advantages and effective security postures.

Strategic investments in research partnerships, technology pilots, and talent development will position forward-thinking organizations to leverage these innovations early in their development cycle.

Technical Glossary

Key technical terms and definitions to help understand the technologies discussed in this article.

Understanding the following technical concepts is essential for grasping the full implications of the security threats and defensive measures discussed in this article. These definitions provide context for both technical and non-technical readers.

Filter by difficulty:

platform intermediate

algorithm Platforms provide standardized environments that reduce development complexity and enable ecosystem growth through shared functionality and integration capabilities.

NLP intermediate

interface

large language model intermediate

platform

API beginner

encryption APIs serve as the connective tissue in modern software architectures, enabling different applications and services to communicate and share data according to defined protocols and data formats.
API concept visualizationHow APIs enable communication between different software systems
Example: Cloud service providers like AWS, Google Cloud, and Azure offer extensive APIs that allow organizations to programmatically provision and manage infrastructure and services.

machine learning intermediate

API