Technology News from Around the World, Instantly on Oracnoos!

ScreenAI: A visual language model for UI and visually-situated language understanding - Related to machine, learning, performance, health, assessment

Google at APS 2024

Google at APS 2024

Today the 2024 March Meeting of the American Physical Society (APS) kicks off in Minneapolis, MN.

A premier conference on topics ranging across physics and related fields, APS 2024 brings together researchers, students, and industry professionals to share their discoveries and build partnerships with the goal of realizing fundamental advances in physics-related sciences and technology.

Furthermore, this year. Google has a strong presence at APS with a booth hosted by the Google Quantum AI team, 50+ talks throughout the conference, and participation in conference organizing activities, special sessions and events. Attending APS 2024 in person? Come visit Google’s Quantum AI booth to learn more about the exciting work we’re doing to solve some of the field’s most interesting challenges.

You can learn more about the latest cutting edge work we are presenting at the conference along with our schedule of booth events below (Googlers listed in bold).

Akool, a startup doing AI-driven avatar content creation, introduced enhancements to Akool Streaming Avatars that connect avatars with AI models.

Amsterdam-headquartered Nebius, which builds full-stack AI infrastructure for tech firms. Has secured $700mn in a private equity deal led by Nvidia, A...

Google DeepMind spinoff Isomorphic Labs expects testing on its first AI-designed drugs to begin this year, as tech startups race to turn algorithmic m...

ScreenAI: A visual language model for UI and visually-situated language understanding

ScreenAI: A visual language model for UI and visually-situated language understanding

ScreenAI’s architecture is based on PaLI, composed of a multimodal encoder block and an autoregressive decoder. The PaLI encoder uses a vision transformer (ViT) that creates image embeddings and a multimodal encoder that takes the concatenation of the image and. Text embeddings as input. This flexible architecture allows ScreenAI to solve vision tasks that can be recast as text+image-to-text problems.

On top of the PaLI architecture. We employ a flexible patching strategy introduced in pix2struct. Instead of using a fixed-grid pattern, the grid dimensions are selected such that they preserve the native aspect ratio of the input image. This enables ScreenAI to work well across images of various aspect ratios.

The ScreenAI model is trained in two stages: a pre-training stage followed by a fine-tuning stage. First, self-supervised learning is applied to automatically generate data labels, which are then used to train ViT and the language model. ViT is frozen during the fine-tuning stage, where most data used is manually labeled by human raters.

Google DeepMind spinoff Isomorphic Labs expects testing on its first AI-designed drugs to begin this year, as tech startups race to turn algorithmic m...

Floods are the most common natural disaster. And are responsible for roughly $50 billion in annual financial damages worldwide. The rate of flood-rela...

Imagine all the things around you — your friends, tools in your kitchen, or even the parts of your bike. They are all connected in different ways. In ...

HEAL: A framework for health equity assessment of machine learning performance

HEAL: A framework for health equity assessment of machine learning performance

As an illustrative case study, we applied the framework to a dermatology model. Which utilizes a convolutional neural network similar to that described in prior work. This example dermatology model was trained to classify 288 skin conditions using a development dataset of 29k cases. The input to the model consists of three photos of a skin concern along with demographic information and a brief structured medical history. The output consists of a ranked list of possible matching skin conditions.

Using the HEAL framework. We evaluated this model by assessing whether it prioritized performance with respect to pre-existing health outcomes. The model was designed to predict possible dermatologic conditions (from a list of hundreds) based on photos of a skin concern and patient metadata. Evaluation of the model is done using a top-3 agreement metric, which quantifies how often the top 3 output conditions match the most likely condition as suggested by a dermatologist panel. The HEAL metric is computed via the anticorrelation of this top-3 agreement with health outcome rankings.

We used a dataset of 5,420 teledermatology cases, enriched for diversity in age, sex and. Race/ethnicity, to retrospectively evaluate the model’s HEAL metric. The dataset consisted of “store-and-forward” cases from patients of 20 years or older from primary care providers in the USA and. Skin cancer clinics in Australia. Based on a review of the literature, we decided to explore race/ethnicity, sex and age as potential factors of inequity, and used sampling techniques to ensure that our evaluation dataset had sufficient representation of all race/ethnicity. Sex and age groups. To quantify pre-existing health outcomes for each subgroup we relied on measurements from public databases endorsed by the World Health Organization, such as Years of Life Lost (YLLs) and Disability-Adjusted Life Years (DALYs; years of life lost plus years lived with disability).

Google DeepMind spinoff Isomorphic Labs expects testing on its first AI-designed drugs to begin this year, as tech startups race to turn algorithmic m...

Furthermore, the Indian space sector, once dominated by government-led initiatives. Is seeing a surge in private players, opening up career trajectories that didn’...

UK startup PhysicsX, founded by former Formula 1 engineering whizz Robin “Dr. Rob” Tuluie, has unveiled an AI tool that could fast-track the time it t...

Market Impact Analysis

Market Growth Trend

2018201920202021202220232024
23.1%27.8%29.2%32.4%34.2%35.2%35.6%
23.1%27.8%29.2%32.4%34.2%35.2%35.6% 2018201920202021202220232024

Quarterly Growth Rate

Q1 2024 Q2 2024 Q3 2024 Q4 2024
32.5% 34.8% 36.2% 35.6%
32.5% Q1 34.8% Q2 36.2% Q3 35.6% Q4

Market Segments and Growth Drivers

Segment Market Share Growth Rate
Machine Learning29%38.4%
Computer Vision18%35.7%
Natural Language Processing24%41.5%
Robotics15%22.3%
Other AI Technologies14%31.8%
Machine Learning29.0%Computer Vision18.0%Natural Language Processing24.0%Robotics15.0%Other AI Technologies14.0%

Technology Maturity Curve

Different technologies within the ecosystem are at varying stages of maturity:

Innovation Trigger Peak of Inflated Expectations Trough of Disillusionment Slope of Enlightenment Plateau of Productivity AI/ML Blockchain VR/AR Cloud Mobile

Competitive Landscape Analysis

Company Market Share
Google AI18.3%
Microsoft AI15.7%
IBM Watson11.2%
Amazon AI9.8%
OpenAI8.4%

Future Outlook and Predictions

The Language Google 2024 landscape is evolving rapidly, driven by technological advancements, changing threat vectors, and shifting business requirements. Based on current trends and expert analyses, we can anticipate several significant developments across different time horizons:

Year-by-Year Technology Evolution

Based on current trajectory and expert analyses, we can project the following development timeline:

2024Early adopters begin implementing specialized solutions with measurable results
2025Industry standards emerging to facilitate broader adoption and integration
2026Mainstream adoption begins as technical barriers are addressed
2027Integration with adjacent technologies creates new capabilities
2028Business models transform as capabilities mature
2029Technology becomes embedded in core infrastructure and processes
2030New paradigms emerge as the technology reaches full maturity

Technology Maturity Curve

Different technologies within the ecosystem are at varying stages of maturity, influencing adoption timelines and investment priorities:

Time / Development Stage Adoption / Maturity Innovation Early Adoption Growth Maturity Decline/Legacy Emerging Tech Current Focus Established Tech Mature Solutions (Interactive diagram available in full report)

Innovation Trigger

  • Generative AI for specialized domains
  • Blockchain for supply chain verification

Peak of Inflated Expectations

  • Digital twins for business processes
  • Quantum-resistant cryptography

Trough of Disillusionment

  • Consumer AR/VR applications
  • General-purpose blockchain

Slope of Enlightenment

  • AI-driven analytics
  • Edge computing

Plateau of Productivity

  • Cloud infrastructure
  • Mobile applications

Technology Evolution Timeline

1-2 Years
  • Improved generative models
  • specialized AI applications
3-5 Years
  • AI-human collaboration systems
  • multimodal AI platforms
5+ Years
  • General AI capabilities
  • AI-driven scientific breakthroughs

Expert Perspectives

Leading experts in the ai tech sector provide diverse perspectives on how the landscape will evolve over the coming years:

"The next frontier is AI systems that can reason across modalities and domains with minimal human guidance."

— AI Researcher

"Organizations that develop effective AI governance frameworks will gain competitive advantage."

— Industry Analyst

"The AI talent gap remains a critical barrier to implementation for most enterprises."

— Chief AI Officer

Areas of Expert Consensus

  • Acceleration of Innovation: The pace of technological evolution will continue to increase
  • Practical Integration: Focus will shift from proof-of-concept to operational deployment
  • Human-Technology Partnership: Most effective implementations will optimize human-machine collaboration
  • Regulatory Influence: Regulatory frameworks will increasingly shape technology development

Short-Term Outlook (1-2 Years)

In the immediate future, organizations will focus on implementing and optimizing currently available technologies to address pressing ai tech challenges:

  • Improved generative models
  • specialized AI applications
  • enhanced AI ethics frameworks

These developments will be characterized by incremental improvements to existing frameworks rather than revolutionary changes, with emphasis on practical deployment and measurable outcomes.

Mid-Term Outlook (3-5 Years)

As technologies mature and organizations adapt, more substantial transformations will emerge in how security is approached and implemented:

  • AI-human collaboration systems
  • multimodal AI platforms
  • democratized AI development

This period will see significant changes in security architecture and operational models, with increasing automation and integration between previously siloed security functions. Organizations will shift from reactive to proactive security postures.

Long-Term Outlook (5+ Years)

Looking further ahead, more fundamental shifts will reshape how cybersecurity is conceptualized and implemented across digital ecosystems:

  • General AI capabilities
  • AI-driven scientific breakthroughs
  • new computing paradigms

These long-term developments will likely require significant technical breakthroughs, new regulatory frameworks, and evolution in how organizations approach security as a fundamental business function rather than a technical discipline.

Key Risk Factors and Uncertainties

Several critical factors could significantly impact the trajectory of ai tech evolution:

Ethical concerns about AI decision-making
Data privacy regulations
Algorithm bias

Organizations should monitor these factors closely and develop contingency strategies to mitigate potential negative impacts on technology implementation timelines.

Alternative Future Scenarios

The evolution of technology can follow different paths depending on various factors including regulatory developments, investment trends, technological breakthroughs, and market adoption. We analyze three potential scenarios:

Optimistic Scenario

Responsible AI driving innovation while minimizing societal disruption

Key Drivers: Supportive regulatory environment, significant research breakthroughs, strong market incentives, and rapid user adoption.

Probability: 25-30%

Base Case Scenario

Incremental adoption with mixed societal impacts and ongoing ethical challenges

Key Drivers: Balanced regulatory approach, steady technological progress, and selective implementation based on clear ROI.

Probability: 50-60%

Conservative Scenario

Technical and ethical barriers creating significant implementation challenges

Key Drivers: Restrictive regulations, technical limitations, implementation challenges, and risk-averse organizational cultures.

Probability: 15-20%

Scenario Comparison Matrix

FactorOptimisticBase CaseConservative
Implementation TimelineAcceleratedSteadyDelayed
Market AdoptionWidespreadSelectiveLimited
Technology EvolutionRapidProgressiveIncremental
Regulatory EnvironmentSupportiveBalancedRestrictive
Business ImpactTransformativeSignificantModest

Transformational Impact

Redefinition of knowledge work, automation of creative processes. This evolution will necessitate significant changes in organizational structures, talent development, and strategic planning processes.

The convergence of multiple technological trends—including artificial intelligence, quantum computing, and ubiquitous connectivity—will create both unprecedented security challenges and innovative defensive capabilities.

Implementation Challenges

Ethical concerns, computing resource limitations, talent shortages. Organizations will need to develop comprehensive change management strategies to successfully navigate these transitions.

Regulatory uncertainty, particularly around emerging technologies like AI in security applications, will require flexible security architectures that can adapt to evolving compliance requirements.

Key Innovations to Watch

Multimodal learning, resource-efficient AI, transparent decision systems. Organizations should monitor these developments closely to maintain competitive advantages and effective security postures.

Strategic investments in research partnerships, technology pilots, and talent development will position forward-thinking organizations to leverage these innovations early in their development cycle.

Technical Glossary

Key technical terms and definitions to help understand the technologies discussed in this article.

Understanding the following technical concepts is essential for grasping the full implications of the security threats and defensive measures discussed in this article. These definitions provide context for both technical and non-technical readers.

Filter by difficulty:

algorithm intermediate

algorithm

neural network intermediate

interface

platform intermediate

platform Platforms provide standardized environments that reduce development complexity and enable ecosystem growth through shared functionality and integration capabilities.

large language model intermediate

encryption

embeddings intermediate

API

machine learning intermediate

cloud computing